首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14711篇
  免费   2151篇
  国内免费   1336篇
化学   10065篇
晶体学   482篇
力学   2121篇
综合类   74篇
数学   754篇
物理学   4702篇
  2024年   15篇
  2023年   203篇
  2022年   356篇
  2021年   546篇
  2020年   804篇
  2019年   556篇
  2018年   516篇
  2017年   561篇
  2016年   818篇
  2015年   818篇
  2014年   878篇
  2013年   1192篇
  2012年   825篇
  2011年   992篇
  2010年   843篇
  2009年   856篇
  2008年   940篇
  2007年   962篇
  2006年   857篇
  2005年   713篇
  2004年   689篇
  2003年   636篇
  2002年   417篇
  2001年   370篇
  2000年   335篇
  1999年   240篇
  1998年   219篇
  1997年   154篇
  1996年   155篇
  1995年   110篇
  1994年   104篇
  1993年   80篇
  1992年   70篇
  1991年   67篇
  1990年   48篇
  1989年   43篇
  1988年   27篇
  1987年   28篇
  1986年   28篇
  1985年   23篇
  1984年   22篇
  1983年   21篇
  1982年   17篇
  1981年   11篇
  1980年   4篇
  1979年   7篇
  1977年   3篇
  1973年   2篇
  1971年   8篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Monodisperse dye-containing crosslinked particles are promising for application in novel optical chemical sensors due to their intrinsic sensitivity. However, preparation of these particles in aqueous media still remains a challenge, since luminophores inhibit radical processes or else cannot embed into polymer chains because of difference in monomer reactivity ratios. In this work, novel dye-containing monodisperse crosslinked particles were prepared and characterized. In order to obtain dye-containing monodisperse crosslinked particles, we studied seed copolymerization of styrene in the presence of divinylbenzene. The influence of nature and concentration of the used comonomers and co-solvents on shape, size distributions and surface characteristics of the particles formed was investigated. Shapes and diameters of the particles were analyzed by DLS, TEM and SEM. The data of SEM and optical spectroscopy studies demonstrated that the synthesized particles were able to self-assemble into thin-film three-dimensional ordered structures. Finally, the structures under study are promising for development of sensor devices with optical response to acetone.  相似文献   
12.
Metal complexes ([ML2], where M = Fe, Co, or Zn; HL = 2-[(6-ethyl-5-oxo-4,5-dihydro-2H-[1,2,4]triazin-3-ylidene)-hydrazono]-butyric acid, C9H13N5O3) of a Schiff base derived from α-ketobutyric acid (α-KBA) and diaminoguanidine (Damgu) were synthesized and characterized using elemental, spectral, and thermal studies. The metal complexes exhibited similar decomposition behavior, with a highly exothermic final decomposition step resulting in the formation of metal oxides. Isomorphism among the complexes was revealed using a powder X-ray diffraction (PXRD) technique. Solid solution precursors ([Zn1/3M2/3(L)2], where M = Fe, Co) were synthesized and characterized using various physico-chemical techniques. A thermal decomposition technique was used to prepare spinel-type zinc cobaltite (ZnCo2O4) and zinc ferrite (ZnFe2O4) nanocrystalline particles with the synthesized single source precursors. Structural studies using PXRD ascertained the predominant crystal phase to be spinel. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) showed a mean nanoparticle size of 18 ± 2 nm. Magnetic measurements revealed a weak magnetic behavior in the synthesized spinels. In the aqueous phase, the spinels exhibited catalytic activity, reducing 4-nitrophenol (4-NP) in the presence of NaBH4 at room temperature. Additionally, the study demonstrated that the catalyst can be recovered and reused for five cycles with a more than 85% conversion efficiency.  相似文献   
13.
Particularly-shaped silver nanostructures are successfully applied in many scientific fields, such as nanotechnology, catalysis, (nano)engineering, optoelectronics, and sensing. In recent years, the production of shape-controlled silver-based nanostructures and the knowledge around this topic has grown significantly. Hence, on the basis of the most recent results reported in the literature, a critical analysis around the driving forces behind the synthesis of such nanostructures are proposed herein, pointing out the important role of surface-regulating agents in driving crystalline growth by favoring (or opposing) development along specific directions. Additionally, growth mechanisms of the different morphologies considered here are discussed in depth, and critical points highlighted.  相似文献   
14.
This review article covers the growth and characterization of two-dimensional (2D) crystals of transition metal chalcogenides, h-BN, graphene, etc. The chemical vapor transport method for bulk single crystal growth is discussed in detail. Top-down methods like mechanical and liquid exfoliation and bottom-up methods like chemical vapor deposition and molecular beam epitaxy for mono/few-layer growth are described. The optimal characterization techniques such as optical, atomic force, scanning electron, and Raman spectroscopy for identification of mono/few-layer(s) of the 2D crystals are discussed. In addition, a survey was done for the application of 2D crystals for both creation and deterministic transfer of single-photon sources and photovoltaic systems. Finally, the application of plasmonic nanoantenna was proposed for enhanced solar-to-electrical energy conversion and faster/brighter quantum communication devices.  相似文献   
15.
In recent years, spatial self-phase modulation (SSPM) with two-dimensional (2D) materials has attracted the attention of many researchers as an emerging and ubiquitous nonlinear optical effect. In this review, the state of the art of 2D material-based SSPM is summarized. SSPM measures or tunes the nonlinearity of 2D materials, and it is also an effective approach to study the band structure of 2D materials. Several modified forms of SSPM, such as high-order, white-light-excited, vector field excited, and optically nonlinearly enhanced SSPM are also presented. Subsequently, the physical origin of the SSPM formation mechanism is compared and analyzed. Furthermore, the applications of SSPM with 2D materials, including passive photonic devices, generation of Bessel beams, and identifying the mode of the orbital angular momentum, are listed. Finally, several urgent problems of the SSPM with 2D materials, potential applications, and prospects for future development are presented.  相似文献   
16.
A new family of distorted ribbon-shaped nanographenes was designed, synthesized, and their optical and electrochemical properties were evaluated, pointing out an unprecedented correlation between their structural characteristics and the two-photon absorption (TPA) responses and electrochemical band gaps. Three nanographene ribbons have been prepared: a seven-membered-ring-containing nanographene presenting a tropone moiety at the edge, its full-carbon analogue, and a purely hexagonal one. We have found that the TPA cross-sections and the electrochemical band gaps of the seven-membered-ring-containing compounds are higher and lower, respectively, than those of the fully hexagonal polycyclic aromatic hydrocarbon (PAH). Interestingly, the inclusion of additional curvature has a positive effect in terms of non-linear optical properties of those ribbons.  相似文献   
17.
The growth of Li dendrites hinders the practical application of lithium metal anodes (LMAs). In this work, a hollow nanostructure, based on hierarchical MoS2 coated hollow carbon particles preloaded with sulfur (C@MoS2/S), was designed to modify the LMA. The C@MoS2 hollow nanostructures serve as a good scaffold for repeated Li plating/stripping. More importantly, the encapsulated sulfur could gradually release lithium polysulfides during the Li plating/stripping, acting as an effective additive to promote the formation of a mosaic solid electrolyte interphase layer embedded with crystalline hybrid lithium-based components. These two factors together effectively suppress the growth of Li dendrites. The as-modified LMA shows a high Coulombic efficiency of 98 % over 500 cycles at the current density of 1 mA cm−2. When matched with a LiFePO4 cathode, the assembled full cell displays a highly improved cycle life of 300 cycles, implying the feasibility of the proposed LMA.  相似文献   
18.
The three-dimensional structure of nanocomposite microgels was precisely determined by cryo-electron micrography. Several nanocomposite microgels that differ with respect to their nanocomposite structure, which were obtained from seeded emulsion polymerization in the presence of microgels, were used as model nanocomposite materials for cryo-electron micrography. The obtained three-dimensional segmentation images of these nanocomposite microgels provide important insights into the interactions between the hydrophobic monomers and the microgels, that is, hydrophobic styrene monomers recognize molecular-scale differences in polarity within the microgels during the emulsion polymerization. This result led to the formation of unprecedented multi-layered nanocomposite microgels, which promise substantial potential in colloidal applications.  相似文献   
19.
ABSTRACT

In this paper, we perform molecular dynamics simulations of a dielectric fluidic material composed of permanent molecular dipoles. The dielectric spectrum features two peaks at lower frequencies than the system phonon frequency. The primary peak is observed at all temperatures studied and shifts toward lower frequencies as the temperature decreases. During this shift, the secondary peak emerges with a higher peak frequency than the primary peak. The secondary peak amplitude increases as the temperature decreases. Both peaks are dependent on the wavevector; in the small wavevector regime, the primary peak is shifted to higher frequencies as the wavevector squared and the secondary peak amplitude increases as the wavevector increases, but shows no shift in frequency. From the polarisation balance equation, we propose a model for the dielectric spectrum. This captures the spectrum features, and we conjecture that the primary peak is due to dipole moment correlations (Debye-type) and the secondary peak is due to the correlation between the dipole moment and a microscopic local field.  相似文献   
20.
In this work, the application of near infrared (NIR)-emitting NaYbF4:1%Tm3+@NaLuF4:30%Nd3+ core–shell nanoparticles is reported for noninvasive probing and monitoring the temperature during photopolymerization of dental materials. When excited at 808 nm, the synthesized nanoparticles emit NIR photoluminescence (PL) with two distinctive peaks at 865 and 980 nm which correspond to radiative transitions from the doped Nd3+ and Yb3+ ions, respectively. Luminescence intensity ratio between these two bands is found to vary with temperature due to temperature-dependent electronic excitation energy transfer between Nd3+ and Yb3+ ions at the core/shell interface. This finding allows luminescence ratiometric evaluation of the in situ temperature during photopolymerization of resin cement (doped with nanoparticles) in a veneer placement procedure. In addition, the NIR emission also enables PL imaging of the distribution of the adhesive under the veneer. The results highlight that rare-earth ions–doped nanoparticles with both excitation and emission in the NIR spectral range are advantageous for both PL-based nanothermometry and imaging due to the reduced attenuation of NIR light by dental ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号